A Non-enzymatic Model of Δ^4 -3-Ketosteroid Reductases¹

By RONALD A. GASE and UPENDRA K. PANDIT*

(Organic Chemistry Laboratory, University of Amsterdam, Nieuwe Achtergracht 129, Amsterdam, The Netherlands)

Summary Metal-ion electrophilic catalysis of the reduction of the double bond of an $\alpha\beta$ -unsaturated ketone by a pyridine nucleotide coenzyme model has been demonstrated.

CONSIDERABLE interest has recently centred around the mechanism of action of pyridine nucleotide-linked Δ^{4} -3-ketosteroid reductases.^{2,3} Enzymatic studies with mammalian 5 α - and 5 β -(Δ^{4} -3-keto) reductases,³ using a steroidal substrate containing ¹⁸O label at the carbonyl group, have shown that, with both enzymes, the label was retained in the reduced product. These results indicate that a covalent imine intermediate² is unlikely during the reduction process and that the $\alpha\beta$ -unsaturated carbonyl group is activated, towards a hydride transfer from the (NADH) coenzyme, by co-ordination of the carbonyl oxygen with an electrophilic (catalytic) centre in the enzyme. The latter implications for the mechanism of the reductases prompt us to report the metal ion-catalysed reduction of an $\alpha\beta$ -unsaturated ketone, by 1,4-dihydropyridines (NADH models).

Since carbonyl groups by themselves are weak ligands for co-ordination with metal cations (e.g. Mg^{2+} or Zn^{2+}), it was envisaged that a system containing a suitably located second binding-site should prove to be a more adequate substrate for the present study. A simple model which meets these requirements is the $\alpha\beta$ -unsaturated ketone, 2-cinnamoylpyridine (2-CP), which contains a basic nitrogen function and a carbonyl group in a relative proximity that is ideally suited for bidentate chelation with a metal ion. In accordance with these expectations, 2-CP showed complexation with Mg^{2+} and Zn^{2+} {employed as $[M(EtOH)_6]^{2+}[ClO_4^-]_2$ }⁴ in acetonitrile, the solvent of choice for the reduction studies. Comparison of the ¹³C n.m.r. spectra of mixtures of the magnesium ethanolate complex and the isomeric 2-, 3-, and 4-cinnamovlpyridines (2-CP, 3-CP, and 4-CP, respectively) attested to the binding of the metal to both the oxygen and the nitrogen atoms in the case of 2-CP. Particularly revealing were the large chemical shift displacements of the C_{α} , C_{β} , and carbonyl-carbons: $\Delta\delta$ [δ (complexed)- δ (free)] -2.9, +9.5, and +2.6 p.p.m., respectively, of 2-CP. Similar results were obtained for mixtures of 2-CP, 3-CP, 4-CP and $[Zn(EtOH)_6]^{2+}[ClO_4^-]_2$. Furthermore, a crystalline zinc complex of 2-CP, $[(2-CP)_2Zn][ClO_4]_2$, could be isolated, in which two Zn-O and two Zn-N stretching vibrations were visible in the far-i.r. spectrum.⁵

The $\alpha\beta$ -unsaturated ketone 2-CP was inert towards typical NADH models such as the Hantzsch ester (I) or 1benzyl-1,4-dihydronicotinamide (II). However, in the presence of 1.0 equiv. of $[M(EtOH)_6]^{2+}[ClO_4^{-}]_2$, in acetonitrile, 2-CP was quantitatively reduced to (III), by the aforementioned dihydropyridines, at room temperature, in a few minutes. To the best of our knowledge this represents the first example of metal ion catalysis of the reduction of a C=C bond of an $\alpha\beta$ -unsaturated ketone by NADH-models. Reduction with the dideuterio-Hantzsch ester $[4, 4^{-2}H_2]$ -(I) yielded (III) which contained one deuterium atom at the β carbon (n.m.r.). The rates of reduction of the cinnamoylpyridines (0.4M) by 1-benzyl-1,4-dihydronicotinamide (II) (0.4M) in the presence of $0.4M [Mg(EtOH)_6]^{2+}[ClO^-]_2$, were followed by ¹H n.m.r. spectroscopy. The bimolecular rate constants in CD₃CN, at 23 °C, are as follows: k_2 (2-CP) 10.3; $k_2(3\text{-CP}) = 6.5 \times 10^{-3}; \quad k_2(4\text{-CP}) = 3\cdot 2 \times 10^{-2} \,\mathrm{l \ mol^{-1} \ min^{-1}}.$ The latter results, coupled with the complexation studies, emphasize the importance of electrophilic catalysis in the NADH-mediated reduction of $\alpha\beta$ -unsaturated ketones.

(Received, 13th April 1977; Com. 343.)

- ¹ Taken in part from the forthcoming doctorate thesis of R. A. Gase.
- ² U. K. Pandit, F. R. Mas Cabré, R. A. Gase, and M. J. de Nie-Sarink, J.C.S. Chem. Comm., 1974, 627.
- ³ D. C. Wilton, *Biochem. J.*, 1976, **155**, 487. ⁴ P. W. N. M. van Leeuwen, *Rec. Trav. chim.*, 1967, **86**, 247.
- ⁵ Nujol mulls; Y. Kidani, M. Noji, and H. Koike, Bull. Chem. Soc. Japan , 1975, 48, 239.